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Abstract
We discuss the static and dynamical properties of a model of short range attractive colloidal
systems. Our model is a binary mixture of particles interacting with a modified Lennard-Jones
potential that we simulated by molecular dynamics. As previously found, we confirm the
existence of a maximum in diffusivity on varying the temperature at constant high density. The
possibility to characterize such a maximum by studying the properties of the potential energy
landscape (PEL) is also discussed. This has been achieved by calculating the configurational
entropy following two independent methods. It is shown that this quantity presents a maximum
in correspondence with that of diffusivity.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In recent years the advances in colloidal science have allowed
us to discover new important phenomena and to check many
theoretical predictions. A typical example is represented by
hard spheres. For this system, a freezing transition was
predicted in the pioneering work of Hoover and Ree nearly
40 years ago [1]. For 20 years this prediction remained just
a speculation until the 1980s when a first order liquid–solid
phase transition, of purely entropic origin, was experimentally
detected in a system of hard spheres colloids [2].

Another interesting case is represented by systems with
short range attractive interactions. In molecular systems, the
range of the attraction is generally much longer than the typical
size of the molecules. Consequently the role of the range
has never been investigated in detail. For colloidal systems,
however, it is possible to have much richer interactions [3].
When a colloidal solution contains polymers with a radius
of gyration much smaller than the diameter of the particles,
for example, an effective attractive interaction sets in. In
particular, the radius of gyration of the polymer modulates the
range of such attraction. In short ranged attractive colloidal
systems (SRACS) new thermodynamic behaviors emerged as
predicted by theory [4] and simulations [5]. In particular,

when the range of the attraction is short enough, the liquid–
liquid phase separation becomes metastable with respect to
the fluid–crystal one. For a recent review on SRACS see, for
example, [6].

The dynamical properties of colloidal systems are also
important. For hard spheres, for example, a dynamics
arrest has been found when the system is prepared at high
densities [7]. In this situation, the system is frozen in a
disordered structure—a glass—and does not relax anymore.
The existence of this colloidal glassy regime is of great
importance because it has allowed the predictions of mode
coupling theory (MCT) for the glass transition to be fully
tested [8]. Indeed, in a set of beautiful experiments Van Megen
and Underwood gave the first proof of the validity of the MCT
prediction for hard spheres [9].

For SRACS, the phenomenology is even richer. When the
range of attraction is a few percentiles of the colloid diameter,
MCT predicts a re-entrant line in the density–temperature
plane [10, 11]. This means that, above a certain density, it
is possible to melt the glass by lowering the temperature, and
to vitrify it again by decreasing it further. New interesting
phenomena, such as higher order MCT singularities, two
different type of glass and anomalous logarithmic decay in the
density correlators, were also predicted [12]. The presence
of a re-entrant glassy line is responsible for a maximum in
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diffusivity varying the temperature along a constant density
path. This phenomenon has been carefully investigated
and its existence has been successfully established both in
experiments and simulations [13–17].

In this paper we will discuss the possibility of relating the
maximum in the diffusivity with the number of states visited by
the system, i.e. with the so-called configurational entropy. For
water, Scala et al [18] showed that this maximum, that emerges
when the pressure varies, is indeed reflected in a maximum
in the configurational entropy. In that case the phenomenon
is related to the non-spherical feature of the potential. For
SRACS, however, the interaction is centro-symmetric, and
consequently the origin of the phenomenology is completely
different.

To investigate this problem we choose a modification of
the standard Lennard-Jones potential that mimics the short
range attraction typical of SRACS. We had to choose a
continuous potential instead of the discontinuous square-well
potential largely studied by one of us in the past [12, 16, 17]
because one of the routes to calculate the configurational
entropy is the characterization of statistical properties of the
potential energy landscape (PEL) [19–21] that requires the
interaction to be continuous.

In this work, we first simulated the system by standard
molecular dynamics (MD) at a given density. From these
simulations, we calculated the static and dynamical quantities
for different temperatures. In particular, we showed that the
system has a maximum in diffusivity. Next, the maximum in
the diffusivity was connected to the configurational entropy
of the system following two independent routes. The aim of
the paper is two-fold, on one hand we shall provide further
details on the calculation of the configurational entropy as
calculated in [22] and on the other we shall discuss the static
and dynamical properties of the colloidal model we chose to
investigate.

The paper is organized as follow. In section 2 we will
introduce the model and discuss the details of the simulations.
In section 3 we shall study the statics and dynamics of the
system as well as the behavior of the diffusivity. Finally,
section 4 will focus on the calculation of the configurational
entropy.

2. The model

The particles interact by a generalization of the Lennard-Jones
pair potential

VLJn(r) = 4ε

[(σ

r

)2n −
(σ

r

)n
]

(1)

with n = 100. This value of n gives rise to a very short
range interaction with respect to the diameter of the particles
σ . This model potential [23] is a sort of continuous version
of the 3% square-well potential Vsw that has been used as an
effective short range potential for attractive colloids [16, 17].
In figure 1VLJn is shown together with discontinuous Vsw.
We simulated N = 256 particles enclosed in a cubic box
with periodic boundary conditions. We have studied a binary
mixture with two types of particle, A and B, with the same

0.98 1.00 1.02 1.04 1.06 1.08 1.10
r/σ

-0.5

0.0

0.5

SW ε=0.03
LJn n=100

-1.0

1.0

V(r)

Figure 1. Pair potential VLJn , with n = 100, together with an
equivalent square-well with range ε = 0.03.

mass and at the same concentration. The potential parameters
are σAA/σBB = 1.2, σAB = (σAA + σBB)/2 and εAA =
εBB = εAB. With this choice the system does not show any
sign of crystallization. We use Lennard-Jones units (σAA for
length, εAA for energy and τ = (mσ 2

AA/εAA)1/2 for time).
The Boltzmann constant kB was set to unity, consequently the
temperature is measured in units of εAA. Cut and shift in the
pair potential are used (rcut = 1.4). Since the potential is
extremely narrow, we have chosen a particularly short time
(t0 = 7 × 10−5) step to guarantee energy conservation.
Using isothermal molecular dynamics with a Noose–Hoover
thermostat [24], we investigate many temperatures between
0.26 and 2.0 at a density ρ = N/V = 1.43, corresponding
to the packing fraction φ = π

6 (NAσ 3
AA + NBσ 3

BB)/V = 0.59.
The 5 × 107 steps have been used to equilibrate the system.
The data were acquired during the following 2.1 × 108 steps.
For the slower systems, two independent samples were used to
reduce the statistical error.

3. Static and dynamic properties

As discussed in the introduction, short ranged attractive
potentials present several peculiar dynamical behaviors at high
densities, the most striking of these being the presence of a
re-entrant glass transition and the existence of two distinct
glassy phases, whose origin is driven either by attraction
or by repulsion. Historically, the first hint of these new
interesting features came from MCT calculations for a system
of interacting particles by Yukawa [25] and the Baxter
potential [10]. Later the effect of the range was systematically
investigated for a square-well system [12]. Today, the presence
of a re-entrance in the glass line for a short range potential
has been demonstrated both in experiments and numerical
simulations. Indeed these findings represented one of the most
striking successes of MCT.

The model we discuss here, being characterized by a short
ranged attraction, should present all the properties discussed
above. In particular, keeping fixed the density and varying
the temperature, a maximum should appear in the diffusion
constant.
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In this section we will carefully discuss some of the static
and dynamic properties of the VLJn potential as obtained by
MD simulations. First we will focus on static quantities, i.e. the
static structure factors and the radial distribution functions.
The partial static structure factor Sαβ(q) is defined by

Sαβ(q) = 1

N
〈ρα(−q, 0)ρβ(q, 0)〉 (2)

where α(β) = A, B and ρα(q, t) = ∑
l exp (iq · r(α)

l (t)) is
the density variable for the species α. These quantities have
been calculated by averaging over up to 300 independent q-
vectors with the same modulus and for several independent
equilibrated configurations; consequently the statistical error,
due to the small number of particles considered, is noticeably
reduced. This quantity is directly related to Fourier transform
of the radial distribution function, gαβ(r), that has also been
numerically evaluated. We focused on the packing fraction
φ = 0.59 and we studied 16 temperatures ranging from 0.25
up to 2.0. As we shall discuss later, this is indeed the range
of temperatures where the maximum density is encountered.
We verified that the dynamics between the two species does
not decouple, and consequently we shall focus only on the
properties of species A, since for species B the results are
similar.

The partial static structure factors are presented in
figure 2(a). One observes that the shape of the structure
factor changes monotonically as a function of temperature.
In particular, on decreasing the temperature the height of the
first peak decreases whereas its width grows (see the inset
of figure 2(a)). This effect is mainly due to the attraction
that strengthens the bonds between particles, as it can be
argued by the radial distribution function (figure 2(b)) which
shows that the particles at low temperatures spend more time
closed together. On the contrary, at high temperature the
first coordination shell gets looser. As we shall see in what
follows this is a clear indication of the different origin of
the kinetic slowing. Indeed, the system has a tendency to
form bonds which are stronger the lower the temperature and
this increases the relaxation time. On the other hand at high
temperatures each particle starts to feel its neighbors and this
strongly affects the dynamics; it is the so-called cage effect. A
maximum in diffusivity arises from competition between these
two effects. In general, we find that the behavior of the static
structure factor is in agreement with other short range attractive
potentials studied previously [16, 26] and this guarantees that,
for the present model, the dynamical properties are also a result
of the competition between attraction and repulsion.

We shall now turn to the dynamical properties. The first
quantity that we will take into account is the mean square
displacement (MSD), 〈r 2(t)〉 = N−1〈[r(t) − r(0)]2〉, where r
is the vector of the coordinates. Within Newtonian dynamics,
the behavior of the MSD at short times follows the simple law
〈r 2(t)〉 ∼ t2, which accounts for the ballistic motion of the
particles. At later times, particles start to feel the presence
of each other and there is a crossover to the diffusive regime,
i.e. 〈r 2(t)〉 ∼ t . The diffusion coefficient D is defined by the
celebrated Einstein relation [27],

lim
t→∞

〈r 2(t)〉
t

� 6D. (3)

Figure 2. Static structure factors SAA(q) (a) and radial distribution
functions gAA(r) (b) of species A particles for all the temperatures
studied. Arrows in the panel (a) correspond to three different q
vectors used in the calculation of the intermediate scattering function
(see figure 4).

Thus, from the long time limit of the MSD, we determined
the diffusion coefficient D for each state point. At this point
it is perhaps worth saying few words about the choice to use
Newtonian dynamics instead of Brownian dynamics. As a
matter of fact, the latter represents a more realistic choice
since it models the interaction of the colloidal particles with
the molecules of the solvent. It has been shown, however,
that the structural relaxation dynamics is independent of the
short time dynamics [28]. Concerning MCT prediction on
the glass transition, it has also been shown that the relaxation
dynamics do not depend on the microscopic dynamics [29].
More recently, it has also been shown that in the aging process
of a gel model the results are not dependent on the microscopic
dynamics [30]. Consequently we decided to use Newtonian
dynamics since it allows us to span much longer times by
computer simulations. In figure 3 the MSD is displayed for the
different temperatures we studied. In particular in figure 3(top)
we present the MSD for species A, for T � 0.5. This
is the regime where the attraction starts to dominate. At
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Figure 3. Mean square displacements of type A particles for all T
(the legend is the same as in figure 2). Top: data for T < 0.5.
Bottom: data for T > 0.5.

T = 0.5 a first hint of structural slowing down is present
as a plateau at 〈r 2(t)〉 ∼ 0.02, 0.03, which is the typical
length scale squared for the rattling inside a first neighbor
cage. On lowering the temperature, however, this plateau tends
to disappear and the dynamics get slower. According to the
MCT calculation, in this attractive regime a plateau at a much
shorter length scale should start to emerge. This would be an
indication that the particles get localized within the attractive
well rather then inside a neighboring cage. Nevertheless, only
a first hint of this plateau is observed. This agrees with the
observation that the attractive glass is not stable for square-
well systems [17], even if a deep quench at low temperature is
performed. This is due mainly to activated processes that tend
to destabilize the energetic bonds between particles. Recently,
however, indications of the existence of such a plateau for
a completely different attractive system tailored with a long
repulsive barrier has been discussed [31]. In figure 3(bottom)
the MSD is presented for T � 0.5, i.e. the regime where
repulsion is responsible for the kinetic slowing down. In this
case, on increasing the temperature, the formation of a plateau
at 〈r 2(t)〉 � 0.02 is a clear indication of the cage effects
and the length of the plateau grows as the time that a particle
spends trapped by its neighbors increases. As expected, the
height of the plateau is compatible with the value obtained

 φ
A

A
(q

,t)

q=5.57

q=7.81

q=10.04

q=5.57

q=7.81

q=10.04

T < 0.5 T > 0.5

Decreasing T

Increasing T

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

t
10

-3
10

-2
10

-1
10

0
10

1
10

2
10

3
10

4
10

5

t

Figure 4. Left: density–density correlation functions for three
representative q-vectors (see figure 2) and T � 0.5. Right: same as
in the left panel but for T > 0.5.

for square-well binary polydisperse hard sphere systems [32]:
differently from the previous case, here no activated processes
take place and the phenomenology follows MCT predictions
more closely.

Another important quantity that can be evaluated is the
density–density correlation function, or intermediate scattering
function. This quantity is defined as:

φαβ(q, t) = Sαβ(q, t)

Sαβ(q)
= 〈ρα(−q, t)ρβ(q, 0)〉

〈ρα(−q, 0)ρβ(q, 0)〉 (4)

where ρα(q, t) = ∑
l exp (iq · r(α)

l (t)) is the density variable
for species α and Sαβ(q) are the partial static structure factors
of the system, as defined by equation (2). To calculate these
quantities we perform an average over up to 300 independent
q-vectors with the same modulus and on several independent
time windows, consequently the statistical error, due to the
small number of particles considered, is noticeably reduced.
We chose to focus on three representative values for the q-
vectors, q = 5.57, 7.81 and 10.04 which are below, at and
above the first peak of the static structure factors, respectively
(see the arrows in figure 2). In the left panel of figure 4,
we present the results for the three q-vectors in the range
T � 0.5. On decreasing the temperature the relaxation
time of the density fluctuations grows and for the lowest
temperature, i.e. T = 0.25, it increases by almost two orders
of magnitude with respect to T = 0.5. As discussed for the
MSD, no evidence of a clear plateau emerges as a consequence
of the effect of hopping processes. Another important MCT
prediction for short range attractive potentials is the presence
of higher order singularities [12], which have a strong influence
on the dynamics [8, 33]. Indeed, in the proximity of the so-
called A4 singularity, the density–density correlation function
is expected to show an unusual logarithmic decay. Evidence

4
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of this dynamical feature has been encountered in numerical
simulations [16, 17] as well as in experiments [34]. For the
three q-vectors considered here there is no sign of logarithmic
decay. In order to completely rule out this possibility, we also
considered higher q values where the phenomenon, if present,
is expected to be more relevant [35]. In our case, however,
there was no evident sign of a logarithmic decay emerging up
to q = 39.05, probably because we are not close enough to
the singularity. In the right panel of figure 4, the correlators
at T � 0.5 are presented at the same values of the q-vector
discussed above. As expected from the results for the MSD,
the increase in the temperature slows the system down when it
starts to feel the influence of the repulsion, i.e. the cage effect.
Since no activated processes are present in the repulsive glass,
a clear plateau emerges as the temperature increases. This is
a clear indication that the particles spend some time trapped
within the cage of their neighbors and that such time increases
as the temperature is raised. As expected, the height of the
plateau diminishes as q gets larger.

From the density–density correlation function we can
extract the relaxation time τAA, which we define from the
relation φAA(q, τAA) = 0.4, and we can use equation (3) to
fit the MSD to obtain the value of the diffusivity D. The
two quantities are displayed in figure 5. The relaxation time
(figure 5(a)) presents a minimum at T � 0.5 and, as expected,
decreases with q . This comes as no surprise since larger
length scale density fluctuations take more time to relax. The
diffusion constant (figure 5(b)) is normalize by the quantity
D0 = σAA

√
T/mA to take into account the T dependence

of the microscopic time. As expected, the diffusion presents
a maximum in temperature at T � 0.4 (very close to the
minimum of τ ) as the effect of the competition between the
attractive and the repulsive glass dynamics. It is interesting
to note that, for the low temperature branch of the curve,
i.e. T < 0.4, the diffusion drops dramatically over a relatively
short range of temperature, whereas in the high temperature
region the dependence on the temperature is smoother. This is
due to the particular orientation of the two glassy lines in the
φ–T plane: almost horizontal in the case of the attractive line,
vertical for the repulsive one. This dependence is altered if the
attraction is measured in inverse temperature 1/T as in other
numerical works [15].

A typical effect that MCT cannot predict is the decoupling
between the timescale of the diffusivity of the density
fluctuations. Indeed MCT predicts that the two quantities
follow a power law in such a way that the product D · τ is
a constant. To verify this hypothesis, we plot this product
in the inset of figure 5(b). As expected, this quantities is
a constant only far from the glass transition, indicating the
violation of the Stokes–Einstein relation, a fact that has also
been observed in other systems [36, 37]. The analysis on the
dynamics that we discussed in the present section indicates
that the model we choose follows the expected trends of other
SRACS and possesses a diffusivity maximum. This makes
it a good candidate for investigating the relation between the
diffusion maximum and configurational entropy, a task that
we shall tackle in the following section. The fact that the
static and dynamic quantities discussed in this section do not

Figure 5. (a) Relaxation times τAA(q), as extracted from the
correlators φAA, for three representative q-vectors. (b) Self diffusion
constant D/D0 determined by the mean square displacements. The
inset shows the Stokes–Einstein relation, Dτ versus T .

differ from those of other SRACS allows us to conclude that all
the properties we shall discuss for the configurational entropy
originate from the same mechanisms.

4. Configurational entropy

Configurational entropy Sconf is a basic quantity in the
description of disordered systems, i.e. in those systems having
an exponentially large number of states. It is well established
that Sconf is not only deeply related to the possible existence
of a thermodynamic transition in glassy systems (defined
by the point at which Sconf vanishes), but also has a close
relationship with the dynamics of the system, through the
celebrated Adam–Gibbs relation. The calculation of Sconf

is then of particular relevance in the study of systems with
glassy behaviors, especially when, as in the present case, the
system has very peculiar properties. In this section we want
to answer a specific question. Is the observed diffusivity
maximum related to a configurational entropy maximum? In
other words, is the slowing down at high and low T signaled
by a decreasing number of accessible states? To answer these
questions, we have calculated the configurational entropy of

5
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the present model using two different techniques, one based on
PEL concepts and the other, more general, based on a perturbed
Hamiltonian. Both make use of a decomposition of the total
entropy S into a sum of a configurational contribution Sconf and
a vibrational one Svib:

S = Sconf + Svib (5)

which comes from the idea that, close to the arrested region,
there are two well separated time scales, a fast one, related
to the motion inside a local state, and a slow one associated
with the exploration of different states. In this section we will
discuss the details of the calculation of the two terms, S (total
entropy) and Svib (vibrational entropy), needed to estimate Sconf

through equation (5).

4.1. Total entropy

Let us start with the calculation of the total entropy S. We
need the value of S at φ = 0.59 for different values of the
temperature. The standard technique consists of performing a
thermodynamic integration starting from the limit of infinite
dilution. In this limit the system behaves as an ideal gas and
the value of the entropy is known. The integration scheme is
represented schematically in the inset of figure 6(a). The first
part of the path is along an isotherm characterized by T0 = 0.4,
starting from a density ρ0 = 0 which represents the ideal limit
(the point labeled A in the inset) to a density ρ which is the
number density equivalent to φ = 0.59. Along this isotherm it
is possible to calculate the entropy at the point (T0, ρ) (labeled
B in the inset) by a thermodynamic integration:

S(T0, ρ) = Sid(T0, ρ) + 
U(T0)

T0
− N

T0

∫ ρ

0

dρ ′

ρ ′2 Pex (6)

where 
U(T0) is the variation of the energy between states A
and B, Pex is the excess pressure and Sid is the entropy of the
ideal gas. For a binary mixture, the entropy of the ideal gas is

Sid(T, ρ)/N = 5
2 − ln ρ − 3 ln λ + ln 2 (7)

where λ = (2πβh̄2/m)
1
2 is the de Broglie wavelength and

the term ln 2 takes into account the mixing contribution due
to the existence of two species rather than one. To perform
the integration along this first path we proceeded numerically.
We selected about 15 configurations with the volume increased
logarithmically from 7030.03 (corresponding to φ � 0.01)
to 178.55 (corresponding to φ = 0.59). After a constant
temperature equilibration at T0 = 0.4, we calculate Pex

averaging over many independent configurations generated by
simulating the system at constant energy. No sign of phase
separation was encountered along this path. The values of
the excess pressure obtained by this procedure are plotted in
figure 6(a). In order to proceed with the integration we fitted
our data with a virial expansion:

Pex =
m∑

i=2

ci

V i
(8)

where we chose m = 7. For the case m = 2, the c2 can be
calculated analytically but the agreement with the numerical

Figure 6. (a) Pressure as a function of the volume along the isotherm
T = 0.4. The dashed line is the fit with equations (8) with m = 7.
The dot–dot–dashed line is the fit with m = 2 using the analytical
second virial coefficient. (b) Potential energy per particle along a
constant density path, the dashed line is the fit used in the
thermodynamic integration. Inset: integration path to calculate the
total entropy.

data is satisfactory only at low densities. In figure 6(a), we
present the results of our fits which are quite satisfactory. As
expected, in the large volume limit the pressure goes to the
correct limit, i.e. Pex ∼ 1/V 2, which is the expansion up to
the second virial coefficient [38]. Once the coefficients of the
expansion (8) have been determined, the entropy of point B can
be easily evaluated by performing the integral in equation (6).

The next step consists of a thermodynamic integration
along a path at constant density (represented by the line (B, C)

in the inset of figure 6(a)). The total entropy at different
temperatures T can be evaluated by

S(T, ρ) = S(T0, ρ) +
∫ T

T0

dT ′

T ′

(
3

2
N + ∂U

∂T ′

)
, (9)

where S(T0, ρ) has been calculated in the (A, B) segment of
the thermodynamic integration by equation (6). The internal
energy per particle U/N has been extracted by the MD run
at the temperature of interest and the result is shown in
figure 6(b). To perform the integral in equation (9), we fit
the potential energy per particle e(T ) = U(T )/N with a

6
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Figure 7. Total entropy as a function of temperature at constant
φ = 0.59.

proper functional form. In previous works [39], the functional
form e(T ) = b0(ρ) + b1(ρ)T 3/5 proposed by Rosenfeld
and Tarazona [40] has been successfully used. In our case,
however, this law does not seem to hold, probably due to the
particular form of the potential. Consequently we interpolate
the data with a simple polynomial model. The result of the
interpolation is displayed in figure 6(b). With this interpolating
function, we can now easily perform the integral in equation (9)
and obtain the total entropy S(T, ρ) for all the temperatures
we are considering. In figure 7 the total entropy per particle at
φ = 0.59 is plotted as a function of temperature T .

4.2. Vibrational entropy

The second step towards the determination of Sconf is the
calculation of the vibrational entropy Svib. We followed
two independent routes. The first, based on PEL properties,
relies on the calculation of the vibrational contribution, in the
harmonic approximation, around inherent structures visited by
the system. The second one, based on a perturbed Hamiltonian,
implies calculating the mean square distances from a given
equilibrium configuration and performing an integral over the
strength of such perturbation.

4.2.1. PEL approach. In the PEL approach, the vibrational
entropy can be calculated from local curvatures of the PEL
around the explored inherent structures [41–45]. At each
temperature we analyzed the properties of the PEL minima
visited by the system during its dynamic evolution. The T -
dependence of the inherent structures energy eIS is reported
in figure 8(b). It can be seen there is a nearly constant value
above a given temperature (T � 0.5), similar to what has
been observed in other supercooled liquids. For comparison, in
figure 8(a) we also present the instantaneous energy e(T ). By
a diagonalization procedure of the Hessian matrix we obtain
information about the eigenfrequencies ωi of the local minima.
Then we can calculate the vibrational entropy in the harmonic
approximation (using simple Gaussian integrations):

S(1)
vib(T ) =

3N−3∑
i=1

[1 − ln(βh̄ωi )], (10)

e
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Figure 8. (a) Average energy and (b) inherent structure energy as a
function of temperature.
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Figure 9. PEL vibrational entropy as a function of temperature.

where h̄ is Plank’s constant, β = 1/kBT . The quantity S(1)
vib is

shown in figure 9, as a function of temperature.

4.2.2. Perturbed Hamiltonian approach. The second method
for the calculation of Svib is based on the Ladd–Frenkel
method. It is based on the introduction of a perturbation in
the original Hamiltonian [46, 47]. This method is adequate in
those cases in which strong anharmonicity effects are relevant
or when a direct PEL analysis is not feasible (as, for example,
in the case of hard spheres [48] or square well [49, 50]
potentials). One considers a new Hamiltonian H ′ of the
following type:

β H ′ = β H + αN(r − r0)
2, (11)

where

(r − r0)
2 = 1

N

N∑
i=1

(
ri − 
r0,i )
2, (12)

H is the original Hamiltonian, α is the strength of the
perturbation and 
r0,i is the position of the i th particle taken
from a given equilibrium reference configuration. We note
that the new Hamiltonian depends on temperature (besides the
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trivial factor α) through the T -dependence of the reference
configuration r0, chosen among the equilibrated unperturbed
configurations at temperature T . The idea is to estimate the
vibrational free energy (and then the vibrational entropy) of
the unperturbed Hamiltonian making an integration over the
strength α of the perturbation. More specifically, we are
interested in the calculation of the unperturbed free energy
F(α → 0). For practical purposes we use a finite value
of the strength of the perturbation (α0) instead of exactly
α = 0, due to the fact that we are interested in calculating the
vibrational properties inside local minima. Hence we require
that the system never escapes toward different local structures,
as happens when the strength α becomes small enough. In the
opposite limit, α → ∞, the system is an Einstein crystal, for
which an analytical expression for the free energy exists

β F(α∞) = 3N ln λ + β E0 + 3N

2
ln(α∞/π) (13)

where E0 is the potential energy of the reference configuration
r0 and λ is the thermal de Broglie wavelength λ =
(2πβh̄2/m)1/2. Making use of the thermodynamic relation

∂(β F)

∂α
= N〈(r − r0)

2〉α, (14)

where 〈· · ·〉α is the canonical average for a specified α, we
obtain, by integration, the following expression for the free
energy difference between two different α values (α∞ and α0):

β F(α∞) − β F(α0) = N
∫ α∞

α0

dα′〈(r − r0)
2〉α′ . (15)

If a small α0 value can be chosen in such a way that the
corresponding system is equivalent to the original system,
but constrained to explore only the phase space of one state,
the estimate of

∫ α∞
α0

dα′〈(r − r0)
2〉α′ is sufficient to evaluate

the required vibrational free energy. Finally we obtain the
expression for the vibrational entropy, writing the free energy
as a sum of a potential energy term and an entropic term,
β F(α0) = β E0 + 3N/2 − Svib:

S(2)

vib(T )

N
=

∫ α∞

α0

dα′〈(r − r0)
2〉α′ − 3

2
ln

(
α∞λ2

πe

)
, (16)

where e is the Neper number. We use isothermal molecular
dynamics with Hamiltonian H ′ to calculate 〈(r − r0)

2〉α
at different α and T . We perform averages over 20
different reference configurations r0, chosen from equilibrated
configurations with an unperturbed Hamiltonian H at
temperature T . Figure 10 shows 〈(r − r0)

2〉α as a function of
α for different T . The dashed line is the (T independent) high
α limit, 3/(2α). As discussed above, one has to choose an α0

value in equation (16) in such a way that the system remains
trapped in a given local state. While at high temperature the
data are smooth and the values of 〈(r − r0)

2〉α remain well
below the cage value (about r 2 � 2×10−2, as can be extracted
by the MSD; see figure 2), at low T the behavior is quite
different: starting from high α, we observe first an approach
to a small value r 2 � 2 × 10−3 (corresponding to more or
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Figure 10. 〈(r − r0)
2〉α at different temperatures as a function of α

on a logarithmic scale.

less the same behavior in the mean square displacement, even
if less pronounced; see figure 2) and then a departure from
it at smaller values of α. We interpret the former as the
vibrational motion inside the state. The full line in figure 10
is a guide to the eyes that extrapolates the first behavior at
lower α for the T = 0.26 case. We have then chosen as
α0 in equation (16) a value for which the system has not yet
left the line: α0 = 5 × 102 (indicated by a vertical line in
figure 10). Although this is a feature only of the low T data,
we have chosen the same α0 for the estimation of S(2)

vib for all
T , in order to obtain a coherent definition of it. Moreover,
in order to take into account the remaining part of the curve
(from 0 to α0) contributing to S(2)

vib , an extra term has been
added to equation (16). In a previous study this was a constant
term c = 0.4 for all temperatures added to the expression of
S(2)

vib (circles in figure 11). Here instead we give an improved
estimation adding a T -dependent term, given by α0〈(r−r0)

2〉α0

corresponding to a constant plateau of the 〈(r−r0)
2〉 from 0 to

α0 (squares in figure 11). α∞ has been fixed at 2 × 106, where
〈(r − r0)

2〉α has reached the asymptotic behavior (dashed line
in figure 10). The resulting S(2)

vib as a function of T is reported
in figure 11.

4.3. Configurational entropy

We are now able to estimate the configurational entropy.
The two routes described above give rise to two different
estimations of Sconf. Let us start with Sconf calculated
using PEL vibrational entropy. Figure 12(a) shows the
configurational entropy per particle S(1)

conf/N , calculated as the
difference between total entropy expressed by equation (9)
and vibrational entropy S(1)

vib given by equation (10). The T -
dependence shows a well defined maximum at temperature
T (1)

max � 0.6, slightly higher than that of diffusivity (Tmax =
0.4). The presence of the maximum is a remarkable
result, indicating a close relationship between the temperature
dependence of diffusivity and configurational entropy, even
if a quantitative coincidence of the peaks seems not to
be exactly achieved. Of course, the use of the harmonic
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Figure 11. Vibrational entropy as a function of temperature
(perturbed Hamiltonian approach). Circles are obtained adding a
constant (T -independent) term c = 0.4 in equation (16), while
squares are obtained using a T -dependent extrapolation (see text for
details).

approximation deserves a few remarks: while in the simple
liquid the harmonic approximation works well at sufficiently
low T , in our case, due to the steepness of the pair potential,
the harmonic approximation is expected to break down at
a much lower T . It is worth noting that an estimation
of the anharmonic contributions, following the techniques
developed for atomic and molecular systems, is not feasible
in the present case due to the strong T -dependence of the
anharmonic energy. Moreover, due to the fact that at high T
the confining cage is not controlled by the short range attractive
interaction but by the excluded volume, the caging emerges
from an averaging over many different inherent structures,
invalidating the use of a single potential energy minimum
to infer vibrational properties. For these reasons a different
method is needed to corroborate the above findings. The
alternative method for the calculation of Sconf is given by
the perturbed Hamiltonian approach. Figure 12(b) shows
the T -dependence of the configurational entropy per particle
S(2)

conf/N , calculated as the difference between total entropy and
S(2)

vib . As the latter has been estimated using two extrapolated
procedures (see figure 11), we also obtain two estimations
of S(2)

conf (circles and squares in figure 12, accordingly to the
symbols in figure 11). Again one observes a peak, located
at about T (2)

max � 0.4–0.5, closed to that of diffusivity. We
note that using the same value of α0 for all the temperatures
introduces an underestimation of S(2)

vib , more pronounced for
the high T data. This fact could have the effect of moving
the peak to a lower T value, approaching the peak value of the
diffusivity. Although the absolute values of S(1)

conf and S(2)

conf are
different (as said before, possible causes of this discrepancy
are over- or under-estimations due to anharmonicity effects in
the PEL approach or to the choice of α0 and the extrapolating
function in the Perturbed approach) the T -dependence is quite
similar, suggesting that the errors are mostly T -independent.
More interestingly, in both approximations a maximum in
Sconf, not far from the T at which D has a maximum, is
clearly detected. Since both methods give a T -dependence of
the configurational entropy with a peak located close to that

S
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Figure 12. Configurational entropy as a function of temperature
calculated using the PEL approach (panel (a)) and the perturbed
Hamiltonian approach (panel (b)). Circles and squares in panel (b)
correspond to the two extrapolated α = 0 contributions in the
calculation of S(2)

vib (see figure 11).

of diffusivity, our work strongly supports the possibility that
in short range colloidal systems the diffusivity maximum is
related to a maximum in the number of states visited by the
system.

5. Conclusions

In conclusion, we have introduced a continuous pair
potential model describing short ranged attractive colloids,
generalizing a 2n − n Lennard-Jones potential with n =
100. We have analyzed static and dynamic quantities (static
structure factors, mean square displacements, diffusivity,
self-correlation functions, relaxation times) as a function
of temperature at fixed high density. In agreement with
previous theoretical, numerical and experimental studies, we
found the presence of a peak in the diffusivity (and in
the inverse relaxation times), confirming for our model the
existence of two slowing down regions at low and high
temperature, respectively. We have then investigated the
possible relationship between diffusivity and configurational
entropy, looking for the existence of a similar peak in the
Sconf. With this aim, we have followed two distinct ways of
calculating Sconf, both using an estimation of the vibrational
entropy term: the first one, based on the PEL approach, makes
use of inherent structures properties, the second one, based on
the Frenkel–Ladd method, adds a perturbed harmonic term in
the Hamiltonian and then follows a suitable extrapolation to
vanishing perturbation. The two estimations of Sconf show a
quantitative difference in their absolute values, due to under-
and/or over-estimation present in both methods (ascribed to the
harmonic approximation in the PEL method, and to the choice
of α0 and/or the choice of the extrapolating function to low α

values for the perturbed Hamiltonian method). However, even
though both methods make use of some approximation, we
found the remarkable fact that both give rise to a peak in the
Sconf varying with T . The qualitative agreement between the T
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behaviors is a strong argument for the robustness of the result:
the configurational entropy and diffusivity show a maximum
at the same temperature. Our findings strongly support the
possibility that in short range attractive colloidal systems the
diffusivity peak is related to a maximum in the number of states
explored by the system.
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